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Abstract
High-resolution neutron inelastic scattering studies of the wavevector and
temperature dependence of the excitation spectrum of 4He in the superfluid
and normal-fluid phases have been made in the wavevector region ‘beyond
the roton’, 2.0 < Q < 3.6 Å−1, at a pressure of 20 bar. The scattering in
this region exhibits two separate components: a sharp peak at low energies
and a broader continuum at higher energies. The relative intensity of these
two peaks is Q-dependent. We find that the two-roton energy, 2�, is never
exceeded by the sharp peak at this pressure. The data are compared with the
density–quasiparticle model of Glyde and Griffin and a tentative analysis of the
temperature dependence of the condensate fraction n0 is made.

1. Introduction

In the superfluid phase of liquid 4He, where there are a finite number of atoms in the Bose
condensate, the excitation spectrum is dominated by the sharp phonon–maxon–roton curve
for wavevectors Q < 2 Å−1. The excitations beyond the roton (Q > 2 Å−1) are not
well determined experimentally nor understood at a microscopic level, partly because very
high instrumental resolution is required to resolve the different components of the observed
scattering [1]. However, the introduction by Glyde and Griffin (G–G) of the density–
quasiparticle interpretation [2, 3] has motivated several recent studies of the behaviour and
temperature dependence of the excitation spectrum in this region [4–7].
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In this paper all energies h̄ω are represented by ω to be consistent with related theoretical
papers. One issue still outstanding is the upper limit of the excitation energy of the single-
excitation component ωQ observed in the dynamic structure factor S(Q,ω). Pitaevskii [8]
postulated that ωQ should never exceed 2�, where � is the roton excitation energy. The
dispersion is expected to flatten out at 2� with increasing Q. This is because when ωQ > 2�
the single excitation has sufficient energy to decay into two rotons and should cease to exist as a
well-defined excitation. In early neutron scattering measurements, Cowley and Woods [9] and
Smith et al [10] found that ωQ exceeded 2� and that a single-excitation peak still remained.
Recent high-resolution studies [1] seem to indicate that ωQ < 2� at SVP.

In this work, we have measured S(Q,ω) for liquid helium beyond the roton at a pressure of
20 bar in order to determine whether ωQ < 2� is a general feature of the excitation spectrum
or a particularity at saturated vapour pressure. The experimental aspects are discussed in
section 2. Section 3 outlines the Glyde–Griffin interpretation and a specific parametrization
thereof which will be used for analysing our data. The results of the measurements are presented
and analysed in section 4 using both a phenomenological approach and the G–G interpretation.
Section 5 concludes the paper.

2. Experimental details

Neutron inelastic scattering measurements were performed on the IRIS inverted-geometry
time-of-flight spectrometer at the ISIS pulsed neutron source. A final neutron energy of
Ef = 7.3867 meV (wavevector 1.8882 Å−1) was selected by using the (004) Bragg reflection
of an array of pyrolytic graphite (PG) analysers cooled to 25 K to reduce background from
thermal diffuse scattering [11]. The energy resolution at the elastic position is approximately
50µeV in this configuration, although the energy resolution isQ-dependent as we will discuss
below. There are 51 detector elements, each with an associated S(φ, ω), where φ is the
scattering angle and ω is the frequency.

Approximately 148 cm3 of high-purity 4He was condensed into a cylindrical aluminium
sample cell (internal diameter 56 mm, internal height 61 mm). Inside the cell were placed three
0.5 mm thick horizontal disc-shaped cadmium spacers (diameter 56 mm) regularly spaced
vertically to minimize multiple-scattering events. Between these discs were placed three
vertically positioned aluminium foil cylinders (diameter 45 mm, height 20 mm, thickness
0.125 mm). The sample was pressurized to 20 bar and cooled in a 3He sorption cryostat.

Measurements were made at temperatures of 0.60, 1.29, 1.70 and 2.10 K. Temperature
regulation was stable to within ±0.01 K. The superfluid transition temperature of liquid 4He
at a pressure of 20 bar is Tλ = 1.928 K. The constant, flat empty-cell background scattering
was measured at 4.5 K and subtracted from the helium scattering.

2.1. Data reduction

IRIS records data at constant scattering angles φ. For comparison with other measurements
and theoretical descriptions, it is expedient to express the data in constant-Q form. For this
reason an algorithm was developed to take data taken along lines of constant φ in the (Q,ω)
plane and rebin onto a rectangular (Q,ω) grid. We assume that the detectors are sufficiently
close together that the finite-width strip in (Q,ω) described by each detector is adjacent to
the neighbouring strips. The width of the constant-Q bins (0.05 Å−1) was chosen to be
considerably larger than the Q-width of the detectors. Figure 1 shows the range of (Q,ω)
space available to IRIS.
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Figure 1. Constant-φ loci in (Q,ω) space representing the first and last detectors of IRIS using
the PG(004) analyser configuration. The dispersion curve of superfluid 4He at SVP is also shown
(dotted line).

2.2. Instrumental resolution

2.2.1. Geometrical calculation. In any neutron scattering experiment requiring extraction of
linewidths, some measure of the instrumental resolution broadening is needed. This is simple
at and around the roton wavevector (Q < 2 Å−1), where the observed broadening can be attrib-
uted solely to instrumental resolution broadening, but this is not necessarily true in other regions
of the dispersion curve. Resolution issues are particularly important at wavevectors higher than
the roton, where the excitation peak position, ωQ, and its weight, ZQ, are changing rapidly
with Q. In these regions we expect considerable broadening in Q and ω. By approximating
the resolution function of IRIS by Gaussians in both ω (FWHM �ω) and Q (FWHM �Q),
Crevecoeur et al [12] have formulated an overall quantity, �R(Q), which represents the
FWHM of the overall resolution function:

�R(Q) =
√
(�ω)2 + (�Q)2

(
dωQ
dQ

)2

(1)

where dωQ/dQ is given by the gradient of the 4He dispersion curve at that point. The data in
(Q,ω) can then be convoluted with this Gaussian to enable extraction of the intrinsic excitation
linewidth. Thus (1) allows the determination of the resolution function of IRIS at any position
in (Q,ω) space for this measurement.

2.2.2. Summation over Gaussians. The method outlined above gives the expected broadening
when dω/dQ and dZ/dQ are high, but it does not give any indication of the effect on the
lineshape. It is important to gain some idea of the qualitative lineshape arising from such
broadening. The simplest means of doing this is to sum the response over a given range of
Q. The observed scattering intensity I (Q,ω) is a convolution of the dynamic structure factor
S(Q,ω) and the resolution function R(Q,ω). S(Q,ω) can be approximated by a δ-function
at ωQ′ with weightZQ′ . After integrating out the energy variable in the resolution convolution,
we obtain

I (Q,ω) =
∫ ∞

−∞
ZQ′R(Q−Q′, ω − ωQ′) dQ′. (2)

However, as the Q-resolution of IRIS is dominated by the detector size, we can reasonably
approximate it to be rectangular, of width �Q. By assuming that the energy resolution takes
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the form of a Gaussian, equation (2) can then be written as

I (Q,ω) =
∫ Q+�Q/2

Q−�Q/2
ZQ′R0 exp

(
− (ω − ωQ′)2

2σ 2
ω

)
dQ′ (3)

over a finite Q-range �Q. R0 is chosen such that∫ ∞

−∞
R(Q,ω) dQ dω = 1.

The quantities ωQ′ and ZQ′ were expanded to first order in Q:

ωQ′ = ωQ +
dωQ
dQ

(Q′ −Q) ZQ′ = ZQ +
dZQ
dQ

(Q′ −Q).

The expression in (3) was evaluated numerically forQ = 2.5 Å−1, withQ-bin widths�Q
chosen over a wide range to determine the effect of different �Q on the observed broadening.
The value of σ was taken from the HWHM of the single-excitation peak at this wavevector
at low temperature (σQ=2.5 = �/(2 ln 2)1/2 = 0.093 meV). The results of the calculation are
presented in figure 2, which demonstrates the symmetrical broadening exhibited by the model,
the width of which increases as the Q-binning is widened. Of primary interest is the fact that
we observe no significant asymmetrical broadening of the energy resolution function for small
Q-bin widths �Q (i.e. �Q < 0.2 Å−1). It is therefore reasonable to model the instrumental
resolution using a symmetrical function with a width given by (1).
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Figure 2. Calculated resolution broadening in ω resulting from binning in a finite-Q element of
width �Q centred at Q = 2.5 Å−1. This represents the maximum broadening possible because at
this wavevector the energy and intensity of the response are changing most rapidly with Q. The
calculated response is normalized to unity.

3. Theory

3.1. The Glyde–Griffin approach

The density–quasiparticle interpretation of G–G [2, 3] provides a microscopic interpretation
of the behaviour of liquid 4He above and below Tλ. This scheme qualitatively explains the
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temperature dependence of the phonon–roton excitation by specifically including the Bose
condensate, and allows semi-quantitative comparison with neutron scattering measurements.
In the normal fluid at low Q, the broadened phonon is interpreted by G–G as a zero-sound
mode, i.e. a collective density fluctuation. AsQ increases, this mode becomes heavily damped
and the remaining broad contribution is due to weakly interacting particle–hole excitations.
In the superfluid, the single-quasiparticle excitation is ‘coupled’ into the density-fluctuation
spectrum by the Bose condensate. The density and the single-quasiparticle excitations become
one and the same mode, so there are no independent quasiparticle excitations at lower energy
to which the common mode can decay. This strong coupling with the condensate gives rise to
the well-defined continuous phonon–roton dispersion curve.

3.2. Formulation of the model

The quantity measured in a neutron scattering experiment is the dynamic structure factor
S(Q,ω). This is proportional to the imaginary part of the total dynamic susceptibility χ(Q,ω)
as described in the dielectric formulation [2, 3]:

S(Q,ω) ∝ �(χ(Q,ω)) (4)

where

χ = χ̄

ε
(5)

where ε is the dielectric function. The barred quantities refer to the irreducible contribution as
expressed in the dielectric formalism. The key aspect of the density–quasiparticle interpretation
is the separation of the atoms in the Bose condensate from those above. This is achieved by
the decomposition of χ̄ into two parts:

χ̄ = χ̄R + χ̄S . (6)

The first part in (6), χ̄R , describes the regular density excitations, involving only states above the
condensate. It can be separated into a single-quasiparticle–hole component and a multiparticle
component:

χ̄R = χ̄o + χ̄m (7)

The multiparticle component χ̄m is neglected in the Glyde–Griffin model. Note that while this
may be an acceptable approximation around the phonon–maxon–roton wavevectors, it may
cause significant problems when modelling the response at wavevectors beyond the roton,
as the multiparticle continuum forms an increasingly significant contribution to the observed
scattering spectrum as Q increases.

The second part in (6), χ̄S , represents coupling with the condensate:

χ̄S = �̄Ḡ�̄. (8)

Ḡ is the uncoupled single-particle Green’s function which describes the propagation of a
single-quasiparticle excitation and is coupled into the density spectrum χ by the condensate.
The coupling of Ḡ into the density spectrum is described by the Bose vertex function �̄, which
disappears above Tλ:

�̄(Q,ω) =
√
n0(T )(1 + P(Q,ω)) (9)

where P(Q,ω) is a complicated function related to the terms describing the interference
between one- and two-particle excitations. Equation (9) contains the temperature dependence
of this model. This arises from n0(T ), described by the ideal-Bose-gas result:

n0(T ) = n0(0)[1 − (T /Tλ)
γ ]. (10)
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For an ideal gas, γ = 1.5. For liquid 4He, which is a strongly interacting Bose system, γ has
been estimated to be 4.7 ± 1.2 [13].

At higher wavevectors, beyond the roton, interactions within the liquid are relatively weak
and the model S(Q,ω) is expected to be composed of three weakly related components:

• A sharp, single-quasiparticle peak scaling with temperature to disappear at Tλ, which
arises from Ḡ and the first term in �̄.

• A broader, two-quasiparticle component scaling with temperature in a manner similar
to that of the single-quasiparticle peak. It arises from the second term in �̄ centred at
approximately twice the single-excitation energy.

• A broad, temperature-independent regular density peak which arises from χ̄R .

3.3. Application to experimental data

Above Tλ only density excitations are present and the dynamic structure factor is given by the
uncoupled density response [3]:

S(Q,ω) = F(Q)

π
[nB(ω) + 1]

4ωω̄0�0

(ω2 − ω̄2
0)

2 + (2ω�0)2
(11)

where F(Q) is the Q-dependent weight, ω̄0 is the energy of the regular density peak and �0

is the corresponding HWHM. The Bose occupation factor is nB(ω) = (eω/kBT − 1)−1. At
temperatures below Tλ,

S(Q,ω) = F(Q)

π
[nB(ω) + 1]

(4ωω̄0�0)(ω
2 − ω̄2

SP )
2[

(ω2 − ω2
0)(ω

2 − ω2
SP )

]2
+

[
2ω�0(ω2 − ω̄2

SP −�SP )
]2 (12)

where

(ω2 − ω2
0)(ω

2 − ω2
SP ) ≡ (ω2 − ω̄2

0)(ω
2 − ω̃2

SP )−�SPα0. (13)

Here ω̃2
SP = ω̄2

SP +�SP and ω̃2
0 = ω̄2

0 +α0. ω̄SP and ω̄0 are interpreted as being the uncoupled
quasiparticle and density-fluctuation energies (poles), respectively, in the superfluid. ωSP and
ω0 are the shifted energies due to coupling via the condensate. S(Q,ω) can be described by
five parameters: ω̄0, the regular density response energy; �0, its width; ω̄SP , the single-
particle mode energy; and �SP and α0, which are coupling parameters. All parameters
are held independent of temperature except �SP which represents the coupling between the
quasiparticle and regular density response via the condensate. The temperature dependence
of S(Q,ω) in (12) therefore follows from �SP (T ) ∝ n0(T ). Explicitly,

�SP (T ) = �SP (0)[1 − (T /Tλ)
γ ]. (14)

Thus the experimental determination of the temperature dependence of �SP should provide a
direct measure of the condensate fraction n0.

4. Analysis

4.1. Results

The roton energy � was determined at T = 0.6 K by making a parabolic fit to the sharp
excitation peak positions around the roton minimum (Q ∼ 2 Å−1) as described elsewhere [14].
At this temperature, � = 0.652(1) ± 0.001(4) meV (2� = 1.304(2) meV), the roton
wavevector QR = 2.04 ± 0.01 Å−1 and the roton effective mass µR = 0.224 ± 0.029 m4He.

Figure 3 is a colour map of the excitation spectra in (Q,ω) space in the superfluid and
normal-fluid phases. The top panel demonstrates the splitting of the dispersion into two
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Figure 3. Colour plots showing the observed S(Q,ω) for liquid 4He at 20 bar at temperatures of
0.6 K (top panel) and 2.1 K (bottom panel). The full intensity of the sharp single-excitation peak
has been truncated to display the rich multiphonon structure (higher energy). The two isolated
pockets of scattering on the elastic line (Q ∼ 3 Å−1) are due to Bragg scattering from the Al
sample cell.
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branches at around 2.5 Å−1: a rapidly disappearing sharp peak which continues at an energy
of 2� and a diverging broad peak which extends to higher energies. These two branches
represent the two main components of the scattering spectrum in the models described in
later sections. The bottom panel shows the substantial broadening of the response at higher
temperature. A series of cuts at constant Q are presented in figure 4. At around Q = 2.3 Å−1

we observe a transfer of weight from the sharp, low-energy phonon–roton mode to the broad,
high-energy multiparticle continuum, which steadily continues asQ increases. The dispersion
flattens at around 3 Å−1. The dispersion disappears completely for Q > 4 Å−1, where the
Doppler-broadened recoil scattering becomes the most prominent feature in the excitation
spectrum.
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Figure 4. S(Q,ω) for liquid 4He at 20 bar at representative wavevectors. The transfer of intensity
from the sharp single-excitation peak to the broad multiphonon continuum can be seen with
increasing Q (top to bottom). Note that 2� is not exceeded at any wavevector.

The temperature dependence of S(Q,ω) is considered explicitly in section 4.3 where
figures 7 and 8 show the variation with T atQ = 3.0 Å−1. The weight of the single-excitation
peak is seen to be strongly temperature dependent. As the temperature increases, it becomes
weaker relative to the broad component, until above Tλ it disappears altogether. This is what
would be expected if the excitation is linked to the condensate. The higher-energy region is
seen to remain roughly independent of temperature.
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4.2. Damped harmonic oscillator (DHO) model plus ad hoc Gaussian components

Quantitative analysis of the data was performed with the aim of extracting the energy, linewidth
and peak strength of the single-excitation peak. The sharp single-excitation peak was modelled
using the single-DHO expression:

S(Q,ω) = ZQ

π
[nB(ω) + 1]

[
�Q

(ω − ωQ)2 + �2
Q

− �Q

(ω + ωQ)2 + �2
Q

]
(15)

where ZQ is the single-excitation weight, �Q is the HWHM and ωQ is the excitation energy.
To give a good description of the response, it is necessary to convolute (15) with the resolution
function. The experimentally observed low-energy single-excitation peak has an asymmetric
broadening on the high-energy side, originating from its hybridization with the multiparticle
continuum. To describe this asymmetry, we used a DHO function to model the single excitation,
and a less intense Gaussian component centred at a slightly higher energy than the single-
excitation energy. Two additional ad hoc Gaussians were used to model the high-energy broad
component of the scattering. An example of the quality of data fitting is shown in figure 5.
This approach has little physical justification; it should be thought of only as a convenient way
of describing the single-excitation peak.
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Figure 5. S(Q,ω) for liquid 4He at Q = 2.7 Å−1, 20 bar and T = 0.6 K illustrating the quality
of fitting using the DHO model + ad hoc Gaussian components.

Fits to the data at 0.6 K for 2.0 < Q < 3.6 Å−1 yield the position of the single-excitation
peak, listed in table 1. Figure 6 shows the dispersion curve at this temperature derived using the
above technique. We find that the single-excitation energy ωQ does not exceed the two-roton
energy 2�.

4.3. Glyde–Griffin parametrization

We report on two different methods of implementing the G–G fitting technique. In the first,
the G–G model is parametrized from the high-temperature data above Tλ and the relevant
parameters are kept fixed during fitting to superfluid data. In the second, the model is
parametrized from the normal-fluid data as before, but no attempt is made to keep the relevant
parameters fixed thereafter.

4.3.1. Fixed (high-T ) parameters. To examine the temperature dependence of the data and
to gain some indication of the behaviour of�SP , the data at 3.0 Å−1 were selected for detailed
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Table 1. The energy ωQ and weight ZQ of the sharp peak in S(Q,ω) of liquid 4He at 20 bar
and T = 0.6 K at Q-values beyond the roton, obtained using ad hoc fitting components.
2� = 1.304(2)± 0.004 meV.

Q (Å−1) ωQ (meV) ZQ (arbitrary units)

2.0 0.652 ± 0.002 0.138 ± 0.007
2.2 0.707 ± 0.004 0.160 ± 0.005
2.4 0.979 ± 0.003 0.100 ± 0.002
2.6 1.203 ± 0.002 0.037 ± 0.001
2.8 1.287 ± 0.002 0.013 ± 0.001
3.0 1.305 ± 0.003 0.006 ± 0.002
3.2 1.313 ± 0.003 0.005 ± 0.001
3.4 1.294 ± 0.005 0.003 ± 0.001
3.6 1.295 ± 0.004 0.003 ± 0.001
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Figure 6. Energy dispersion of 4He at T = 0.6 K determined using ad hoc fitting components
described in the text. The error bars are smaller than the data points. Here we see that 2� is not
exceeded.

study, since the dispersion curve is approximately flat and broadening of the response due to
finite Q-binning can be ignored.

First, the data are considered at T = 2.1 K, which is above Tλ and where there is no
observed single-excitation peak. The response can be described by (11). Least-squares fitting
of (11) yields the parameters F(Q), �0 and ω̄0.

Second, the data are considered at the three temperatures 0.6, 1.29 and 1.7 K. These
temperatures are below Tλ and the response can be described by (12). The quantities F(Q),
�0 and ω̄0 are kept fixed at the values obtained at T = 2.1 K. The remaining parameters in the
fit are ω̄SP , �SP and α0. Since ω̄SP is given by the position of the ‘dip’ in intensity between
the two major components of the scattering, its value can be fixed at this observed position
of ω̄SP = 1.3 meV. We now have two remaining parameters to be fitted: �SP and α0. These
two parameters are allowed to vary freely during the fitting procedure. Results of the fits are
shown in figure 7. The fitted G–G parameters are presented in table 2.

4.3.2. Free (high-T ) parameters. As before, the data are considered at T = 2.1 K, which is
above Tλ and where there is no observed single-excitation peak. Least-squares fitting of (11)
yields the parameters F(Q), �0 and ω̄0.

Again, the data are considered at the three temperatures, 0.6, 1.29 and 1.7 K. These
temperatures are below Tλ and the response can be described by (12). However, equation (12)
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Figure 7. The temperature dependence of the S(Q,ω) observed on IRIS at Q = 3.0 Å−1. The
resolution-broadened G–G fit to the data is shown, with F(Q), �0 and ω0 parametrized from the
data above Tλ.

Table 2. The temperature dependence of the best-fit parameters of the Glyde–Griffin model for
Q = 3.0 Å−1 at 20 bar. In the upper half of the table, F(Q), �0 andω0 were fixed to the T = 2.1 K
values, while they were free to vary in the lower half.

T F(Q) �0 ω̄0 ωSP �SP α0

(K) (arbitrary) (meV) (meV) (meV2) (meV2) (meV2)

0.60 (0.280) (3.45) (4.82) 1.30 0.0492 10.5
1.29 (0.280) (3.45) (4.82) 1.30 0.0498 10.4
1.70 (0.280) (3.45) (4.82) 1.30 −0.160 15.8
2.10 0.280 3.45 4.82 — — —

0.60 0.200 2.00 4.50 1.30 0.0500 7.58
1.29 0.220 2.00 4.40 1.30 0.0500 7.54
1.70 0.210 2.10 4.70 1.30 0.0262 0.997
2.10 0.280 3.45 4.82 — — —

provides a better description of the data if the quantities F(Q), �0 and ω̄0 are allowed to vary
freely around the high-temperature values. �SP andα0 are then established in the same manner
as described above. Results of the fits are shown in figure 8. The fitted G–G parameters are
presented in tables 2 and 3. It is evident that allowing the ‘broad-component’ parameters to
vary from their high-temperature values enables a closer match between the G–G model and
the experimental data to be achieved.
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Figure 8. As figure 7, but with F(Q), �0 and ω0 allowed to vary in the fitting procedure.

Moreover, having extracted the values of �SP from the parametrization it is possible to
see whether �SP provides a measure of the condensate fraction n0 as described by (14).
The most recent value of n0 determined by high-momentum-transfer neutron scattering
measurements is n0 = 7.25 ± 0.75% [15]. To make the comparison, we assume that
�SP (0) ∼ �SP (0.6) ≡ n0 = 7.25%. The experimentally determined values of �SP (T )

can then be compared with the expected values provided by (14). Such a comparison is shown
in figure 9. Firm conclusions about the relationship between �SP and n0 would require data
at a larger number of temperatures. However, we note that the scaling of �SP as depicted in
figure 9 is not inconsistent with the assertion that �SP ∝ n0.

Table 3. The Q-dependence of the best-fit parameters of the Glyde–Griffin model for T = 1.29 K
at 20 bar.

Q ZQ �0 ω̄0 ωSP �SP α0

(Å−1) (arbitrary) (meV) (meV) (meV) (meV2) (meV2)

2.6 1.73 1.92 3.38 1.12 0.104 2.97

2.8 1.74 1.96 3.86 1.18 0.269 6.42

3.0 2.04 2.13 4.54 1.21 0.219 9.96

3.2 2.77 3.02 5.45 1.23 0.090 5.52

3.4 3.60 4.40 6.30 1.23 0.103 15.4

3.6 3.28 4.40 5.96 1.23 0.053 14.2
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Figure 9. The temperature dependence of�SP (data points). The solid line represents the expected
temperature dependence if �SP scales with the condensate fraction, i.e. �SP (T ) ∝ n0(T ).

5. Conclusions

Neutron inelastic scattering measurements have been performed on superfluid 4He at 20 bar
for four temperatures above and below Tλ over a wide range of energies and wavevectors
in the region beyond the roton. The high resolution and good statistical precision of the
data enable clear separation of the two major features of S(Q,ω) in this region; a sharp,
temperature-dependent low-energy peak ‘sitting’ on a broad, largely temperature-independent
higher-energy peak. A transfer of weight between the two peaks can be seen with varying Q.
Both the temperature and wavevector dependence are in good agreement with the calculations
of Glyde and Griffin. Their suggestion that the sharp single-excitation peak arises from the
Bose condensate is supported by its disappearance above Tλ. We have demonstrated that the
energy of the sharp peak never exceeds the two-roton energy 2� at any wavevector at this
pressure.
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